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Abstract

We present a model that generates free-form natural lan-
guage descriptions of image regions. Our model leverages
datasets of images and their sentence descriptions to learn
about the inter-modal correspondences between text and vi-
sual data. Our approach is based on a novel combination
of Convolutional Neural Networks over image regions, bidi-
rectional Recurrent Neural Networks over sentences, and a
structured objective that aligns the two modalities through a
multimodal embedding. We then describe a Recurrent Neu-
ral Network architecture that uses the inferred alignments to
learn to generate novel descriptions of image regions. We
demonstrate the effectiveness of our alignment model with
ranking experiments on Flickr8K, Flickr30K and COCO
datasets, where we substantially improve on the state of the
art. We then show that the sentences created by our gen-
erative model outperform retrieval baselines on the three
aforementioned datasets and a new dataset of region-level
annotations.

1. Introduction
A quick glance at an image is sufficient for a human to point
out and describe an immense amount of details about the vi-
sual scene [8]. However, this remarkable ability has proven
to be an elusive task for our visual recognition models. The
majority of previous work in visual recognition has focused
on labeling images with a fixed set of visual categories, and
great progress has been achieved in these endeavors [36, 6].
However, while closed vocabularies of visual concepts con-
stitute a convenient modeling assumption, they are vastly
restrictive when compared to the enormous amount of rich
descriptions that a human can compose.

Some pioneering approaches that address the challenge of
generating image descriptions have been developed [22, 7].
However, these models often rely on hard-coded visual con-
cepts and sentence templates, which imposes limits on their
variety. Moreover, the focus of these works has been on re-
ducing complex visual scenes into a single sentence, which
we consider as an unnecessary restriction.

Figure 1. Our model generates free-form natural language descrip-
tions of image regions.

In this work, we strive to take a step towards the goal of
generating dense, free-form descriptions of images (Figure
1). The primary challenge towards this goal is in the de-
sign of a model that is rich enough to reason simultaneously
about contents of images and their representation in the do-
main of natural language. Additionally, the model should
be free of assumptions about specific hard-coded templates,
rules or categories and instead rely primarily on training
data. The second, practical challenge is that datasets of im-
age captions are available in large quantities on the internet
[14, 46, 29], but these descriptions multiplex mentions of
several entities whose locations in the images are unknown.

Our core insight is that we can leverage these large image-
sentence datasets by treating the sentences as weak labels,
in which contiguous segments of words correspond to some
particular, but unknown location in the image. Our ap-
proach is to infer these alignments and use them to learn
a generative model of descriptions. Concretely, our contri-
butions are twofold:

• We develop a deep neural network model that in-
fers the latent alignment between segments of sen-
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tences and the region of the image that they describe.
Our model associates the two modalities through a
common, multimodal embedding space and a struc-
tured objective. We validate the effectiveness of this
approach on image-sentence retrieval experiments in
which we surpass the state-of-the-art.

• We introduce a multimodal Recurrent Neural Network
architecture that takes an input image and generates
its description in text. Our experiments show that the
generated sentences significantly outperform retrieval-
based baselines, and produce sensible qualitative pre-
dictions. We then train the model on the inferred cor-
respondences and evaluate its performance on a new
dataset of region-level annotations.

We make our code, data and annotations publicly available.

2. Related Work
Dense image annotations. Our work shares the high-level
goal of densely annotating the contents of images with
many works before us. Barnard et al. [1] and Socher et
al. [38] studied the multimodal correspondence between
words and images to annotate segments of images. Several
works [26, 12, 9] studied the problem of holistic scene un-
derstanding in which the scene type, objects and their spa-
tial support in the image is inferred. However, the focus of
these works is on correctly labeling scenes, objects and re-
gions with a fixed set of categories, while our focus is on
richer and higher-level descriptions of regions.

Generating textual descriptions. Multiple works have ex-
plored the goal of annotating images with textual descrip-
tions on the scene level. A number of approaches pose
the task as a retrieval problem, where the most compatible
annotation in the training set is transferred to a test image
[14, 39, 7, 34, 17], or where training annotations are broken
up and stitched together [23, 27, 24]. However, these meth-
ods rely on a large amount of training data to capture the
variety in possible outputs, and are often expensive at test
time due to their non-parametric nature. Several approaches
have been explored for generating image captions based on
fixed templates that are filled based on the content of the im-
age [13, 22, 7, 43, 44, 4]. This approach still imposes limits
on the variety of outputs, but the advantage is that the final
results are more likely to be syntactically correct. Instead
of using a fixed template, some approaches that use a gen-
erative grammar have also been developed [33, 45]. More
closely related to our approach is the work of Srivastava et
al. [40] who use a Deep Boltzmann Machine to learn a joint
distribution over a images and tags. However, they do not
generate extended phrases. More recently, Kiros et al. [19]
developed a log-bilinear model that can generate full sen-
tence descriptions. However, their model uses a fixed win-

dow context, while our Recurrent Neural Network model
can condition the probability distribution over the next word
in the sentence on all previously generated words.

Grounding natural language in images. A number of ap-
proaches have been developed for grounding textual data in
the visual domain. Kong et al. [20] develop a Markov Ran-
dom Field that infers correspondences from parts of sen-
tences to objects to improve visual scene parsing in RGBD
images. Matuszek et al. [30] learn joint language and per-
ception model for grounded attribute learning in a robotic
setting. Zitnick et al. [48] reason about sentences and
their grounding in cartoon scenes. Lin et al. [28] retrieve
videos from a sentence description using an intermediate
graph representation. The basic form of our model is in-
spired by Frome et al. [10] who associate words and images
through a semantic embedding. More closely related is the
work of Karpathy et al. [18], who decompose images and
sentences into fragments and infer their inter-modal align-
ment using a ranking objective. In contrast to their model
which is based on grounding dependency tree relations, our
model aligns contiguous segments of sentences which are
more meaningful, interpretable, and not fixed in length.

Neural networks in visual and language domains. Mul-
tiple approaches have been developed for representing im-
ages and words in higher-level representations. On the im-
age side, Convolutional Neural Networks (CNNs) [25, 21]
have recently emerged as a powerful class of models for
image classification and object detection [36]. On the sen-
tence side, our work takes advantage of pretrained word
vectors [32, 15, 2] to obtain low-dimensional representa-
tions of words. Finally, Recurrent Neural Networks have
been previously used in language modeling [31, 41], but we
additionally condition these models on images.

3. Our Model
Overview. The ultimate goal of our model is to generate
descriptions of image regions. During training, the input to
our model is a set of images and their corresponding sen-
tence descriptions (Figure 2). We first present a model that
aligns segments of sentences to the visual regions that they
describe through a multimodal embedding. We then treat
these correspondences as training data for our multimodal
Recurrent Neural Network model which learns to generate
the descriptions.

3.1. Learning to align visual and language data
Our alignment model assumes an input dataset of images
and their sentence descriptions. The key challenge to in-
ferring the association between visual and textual data is
that sentences written by people make multiple references
to some particular, but unknown locations in the image. For
example, in Figure 2, the words “Tabby cat is leaning” refer



Figure 2. Overview of our approach. A dataset of images and their sentence descriptions is the input to our model (left). Our model first
infers the correspondences (middle) and then learns to generate novel descriptions (right).

to the cat, the words “wooden table” refer to the table, etc.
We would like to infer these latent correspondences, with
the goal of later learning to generate these snippets from
image regions. We build on the basic approach of Karpa-
thy et al. [18], who learn to ground dependency tree re-
lations in sentences to image regions as part of a ranking
objective. Our contribution is in the use of bidirectional
recurrent neural network to compute word representations
in the sentence, dispensing of the need to compute depen-
dency trees and allowing unbounded interactions of words
and their context in the sentence. We also substantially sim-
plify their objective and show that both modifications im-
prove ranking performance.

We first describe neural networks that map words and image
regions into a common, multimodal embedding. Then we
introduce our novel objective, which learns the embedding
representations so that semantically similar concepts across
the two modalities occupy nearby regions of the space.

3.1.1 Representing images

Following prior work [22, 18], we observe that sentence
descriptions make frequent references to objects and their
attributes. Thus, we follow the method of Girshick et al.
[11] to detect objects in every image with a Region Convo-
lutional Neural Network (RCNN). The CNN is pre-trained
on ImageNet [3] and finetuned on the 200 classes of the
ImageNet Detection Challenge [36]. To establish fair com-
parisons to Karpathy et al. [18], we use the top 19 detected
locations and the whole image and compute the represen-
tations based on the pixels Ib inside each bounding box as
follows:

v =Wm[CNNθc(Ib)] + bm, (1)

where CNN(Ib) transforms the pixels inside bounding box
Ib into 4096-dimensional activations of the fully connected
layer immediately before the classifier. The CNN parame-
ters θc contain approximately 60 million parameters and the
architecture closely follows the network of Krizhevsky et al
[21]. The matrix Wm has dimensions h× 4096, where h is
the size of the multimodal embedding space (h ranges from
1000-1600 in our experiments). Every image is thus repre-
sented as a set of h-dimensional vectors {vi | i = 1 . . . 20}.

3.1.2 Representing sentences

To establish the inter-modal relationships, we would like
to represent the words in the sentence in the same h-
dimensional embedding space that the image regions oc-
cupy. The simplest approach might be to project every in-
dividual word directly into this embedding. However, this
approach does not consider any ordering and word context
information in the sentence. An extension to this idea is
to use word bigrams, or dependency tree relations as pre-
viously proposed [18]. However, this still imposes an ar-
bitrary maximum size of the context window and requires
the use of Dependency Tree Parsers that might be trained on
unrelated text corpora.

To address these concerns, we propose to use a bidirectional
recurrent neural network (BRNN) [37] to compute the word
representations. In our setting, the BRNN takes a sequence
of N words (encoded in a 1-of-k representation) and trans-
forms each one into an h-dimensional vector. However, the
representation of each word is enriched by a variably-sized
context around that word. Using the index t = 1 . . . N to
denote the position of a word in a sentence, the precise form
of the BRNN we use is as follows:

xt =WwIt (2)
et = f(Wext + be) (3)

hft = f(et +Wfh
f
t−1 + bf ) (4)

hbt = f(et +Wbh
b
t+1 + bb) (5)

st = f(Wd(h
f
t + hbt) + bd). (6)

Here, It is an indicator column vector that is all zeros except
for a single one at the index of the t-th word in a word vo-
cabulary. The weights Ww specify a word embedding ma-
trix that we initialize with 300-dimensional word2vec [32]
weights and keep fixed in our experiments due to overfitting
concerns. Note that the BRNN consists of two independent
streams of processing, one moving left to right (hft ) and the
other right to left (hbt) (see Figure 3 for diagram). The fi-
nal h-dimensional representation st for the t-th word is a
function of both the word at that location and also its sur-
rounding context in the sentence. Technically, every st is a
function of all words in the entire sentence, but our empir-



Figure 3. Diagram for evaluating the image-sentence score Skl.
Object regions are embedded with a CNN (left). Words (enriched
by their context) are embedded in the same multimodal space with
a BRNN (right). Pairwise similarities are computed with inner
products (magnitudes shown in grayscale) and finally reduced to
image-sentence score with Equation 8.

ical finding is that the final word representations (st) align
most strongly to the visual concept of the word at that lo-
cation (It). Our hypothesis is that the strength of influence
diminishes with each step of processing since st is a more
direct function of It than of the other words in the sentence.

We learn the parameters We,Wf ,Wb,Wd and the respec-
tive biases be, bf , bb, bd. A typical size of the hidden rep-
resentation in our experiments ranges between 300-600 di-
mensions. We set the activation function f to the rectified
linear unit (ReLU), which computes f : x 7→ max(0, x).

3.1.3 Alignment objective

We have described the transformations that map every im-
age and sentence into a set of vectors in a common h-
dimensional space. Since our labels are at the level of en-
tire images and sentences, our strategy is to formulate an
image-sentence score as a function of the individual scores
that measure how well a word aligns to a region of an im-
age. Intuitively, a sentence-image pair should have a high
matching score if its words have a confident support in the
image. In Karpathy et al. [18], they interpreted the dot
product vTi st between an image fragment i and a sentence
fragment t as a measure of similarity and used these to de-
fine the score between image k and sentence l as:

Skl =
∑
t∈gl

∑
i∈gk

max(0, vTi st). (7)

Here, gk is the set of image fragments in image k and gl
is the set of sentence fragments in sentence l. The indices
k, l range over the images and sentences in the training set.
Together with their additional Multiple Instance Learning
objective, this score carries the interpretation that a sentence

fragment aligns to a subset of the image regions whenever
the dot product is positive. We found that the following
reformulation simplifies the model and alleviates the need
for additional objectives and their hyperparameters:

Skl =
∑
t∈gl

maxi∈gkv
T
i st. (8)

Here, every word st aligns to the single best image region.
As we show in the experiments, this simplified model also
leads to improvements in the final ranking performance.
Assuming that k = l denotes a corresponding image and
sentence pair, the final max-margin, structured loss remains:

C(θ) =
∑
k

[∑
l

max(0, Skl − Skk + 1)︸ ︷︷ ︸
rank images

(9)

+
∑
l

max(0, Slk − Skk + 1)︸ ︷︷ ︸
rank sentences

]
.

This objective encourages aligned image-sentences pairs to
have a higher score than misaligned pairs, by a margin.

3.1.4 Decoding text segment alignments to images

Consider an image from the training set and its correspond-
ing sentence. We can interpret the quantity vTi st as the un-
normalized log probability of the t−th word describing any
of the bounding boxes in the image. However, since we are
ultimately interested in generating snippets of text instead
of single words, we would like to align extended, contigu-
ous sequences of words to a single bounding box. Note that
the naı̈ve solution that assigns each word independently to
the highest-scoring region is insufficient because it leads to
words getting scattered inconsistently to different regions.

To address this issue, we treat the true alignments as latent
variables in a Markov Random Field (MRF) where the bi-
nary interactions between neighboring words encourage an
alignment to the same region. Concretely, given a sentence
with N words and an image with M bounding boxes, we
introduce the latent alignment variables aj ∈ {1..M} for
j = 1 . . . N and formulate an MRF in a chain structure
along the sentence as follows:

E(a) =
∑

j=1...N

ψUj (aj) +
∑

j=1...N−1
ψBj (aj , aj+1) (10)

ψUj (aj = t) = vTi st (11)

ψBj (aj , aj+1) = β1[aj = aj+1]. (12)

Here, β is a hyperparameter that controls the affinity to-
wards longer word phrases. This parameter allows us to
interpolate between single-word alignments (β = 0) and



Figure 4. Diagram of our multimodal Recurrent Neural Network
generative model. The RNN takes an image, a word, the context
from previous time steps and defines a distribution over the next
word. START and END are special tokens.

aligning the entire sentence to a single, maximally scoring
region when β is large. We minimize the energy to find the
best alignments a using dynamic programming. The output
of this process is a set of image regions annotated with seg-
ments of text. We now describe an approach for generating
novel phrases based on these correspondences.

3.2. Multimodal Recurrent Neural Network for
generating descriptions

In this section we assume an input set of images and their
textual descriptions. These could be full images and their
sentence descriptions, or regions and text snippets as dis-
cussed in previous sections. The key challenge is in the de-
sign of a model that can predict a variable-sized sequence
of outputs. In previously developed language models based
on Recurrent Neural Networks (RNNs) [31, 41, 5], this is
achieved by defining a probability distribution of the next
word in a sequence, given the current word and context from
previous time steps. We explore a simple but effective ex-
tension that additionally conditions the generative process
on the content of an input image. More formally, the RNN
takes the image pixels I and a sequence of input vectors
(x1, . . . , xT ). It then computes a sequence of hidden states
(h1, . . . , ht) and a sequence of outputs (y1, . . . , yt) by iter-
ating the following recurrence relation for t = 1 to T :

bv =Whi[CNNθc(I)] (13)
ht = f(Whxxt +Whhht−1 + bh + bv) (14)
yt = softmax(Wohht + bo). (15)

In the equations above,Whi,Whx,Whh,Woh and bh, bo are
a set of learnable weights and biases. The output vector yt
has the size of the word dictionary and one additional di-
mension for a special END token that terminates the gener-
ative process. Note that we provide the image context vector
bv to the RNN at every iteration so that it does not have to
remember the image content while generating words.

RNN training. The RNN is trained to combine a word (xt),
the previous context (ht−1) and the image information (bv)
to predict the next word (yt). Concretely, the training pro-
ceeds as follows (refer to Figure 4): We set h0 = ~0, x1 to

a special START vector, and the desired label y1 as the first
word in the sequence. In particular, we use the word em-
bedding for “the” as the START vector x1. Analogously,
we set x2 to the word vector of the first word and expect the
network to predict the second word, etc. Finally, on the last
step when xT represents the last word, the target label is set
to a special END token. The cost function is to maximize
the log probability assigned to the target labels.

RNN at test time. The RNN predicts a sentence as follows:
We compute the representation of the image bv , set h0 = 0,
x1 to the embedding of the word “the”, and compute the
distribution over the first word y1. We sample from the dis-
tribution (or pick the argmax), set its embedding vector as
x2, and repeat this process until the END token is generated.

3.3. Optimization
We use Stochastic Gradient Descent with mini-batches of
100 image-sentence pairs and momentum of 0.9 to optimize
the alignment model. We cross-validate the learning rate
and the weight decay. We also use dropout regularization in
all layers except in the recurrent layers [47]. The generative
RNN is more difficult to optimize, party due to the word
frequency disparity between rare words, and very common
words (such as the END token). We achieved the best re-
sults using RMSprop [42], which is an adaptive step size
method that scales the gradient of each weight by a running
average of its gradient magnitudes.

4. Experiments
Datasets. We use the Flickr8K [14], Flickr30K [46] and
COCO [29] datasets in our experiments. These datasets
contain 8,000, 31,000 and 123,000 images respectively
and each is annotated with 5 sentences using Amazon
Mechanical Turk. For Flickr8K and Flickr30K, we use
1,000 images for validation, 1,000 for testing and the rest
for training (consistent with [14, 18]). For COCO we use
5,000 images for both validation and testing.

Data Preprocessing. We convert all sentences to lower-
case, discard non-alphanumeric characters, and filter out
the articles “an”, “a”, and “the” for efficiency. Our word
vocabulary contains 20,000 words.

4.1. Image-Sentence Alignment Evaluation
We first investigate the quality of the inferred text and im-
age alignments. As a proxy for this evaluation we perform
ranking experiments where we consider a withheld set of
images and sentences and then retrieve items in one modal-
ity given a query from the other. We use the image-sentence
score Skl (Section 3.1.3) to evaluate a compatibility score
between all pairs of test images and sentences. We then re-
port the median rank of the closest ground truth result in the



Image Annotation Image Search
Model R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

Flickr8K
DeViSE (Frome et al. [10]) 4.5 18.1 29.2 26 6.7 21.9 32.7 25
SDT-RNN (Socher et al. [39]) 9.6 29.8 41.1 16 8.9 29.8 41.1 16
DeFrag (Karpathy et al. [18]) 12.6 32.9 44.0 14 9.7 29.6 42.5 15
Our implementation of DeFrag [18] 13.8 35.8 48.2 10.4 9.5 28.2 40.3 15.6
Our model: DepTree edges 14.8 37.9 50.0 9.4 11.6 31.4 43.8 13.2
Our model: BRNN 16.5 40.6 54.2 7.6 11.8 32.1 44.7 12.4

Flickr30K
DeViSE (Frome et al. [10]) 4.5 18.1 29.2 26 6.7 21.9 32.7 25
SDT-RNN (Socher et al. [39]) 9.6 29.8 41.1 16 8.9 29.8 41.1 16
DeFrag (Karpathy et al. [18]) 14.2 37.7 51.3 10 10.2 30.8 44.2 14
Our implementation of DeFrag [18] 19.2 44.5 58.0 6.0 12.9 35.4 47.5 10.8
Our model: DepTree edges 20.0 46.6 59.4 5.4 15.0 36.5 48.2 10.4
Our model: BRNN 22.2 48.2 61.4 4.8 15.2 37.7 50.5 9.2

COCO
Our model: 1K test images 29.4 62.0 75.9 2.5 20.9 52.8 69.2 4.0
Our model: 5K test images 11.8 32.5 45.4 12.2 8.9 24.9 36.3 19.5

Table 1. Image-Sentence ranking experiment results. R@K is Recall@K (high is good). Med r is the median rank (low is good). In the
results for our models, we take the top 5 validation set models, evaluate each independently on the test set and then report the average
performance. The standard deviations on the recall values range from approximately 0.5 to 1.0.

list and Recall @K, which measures the fraction of times a
correct item was found among the top K results. The results
of these experiments can be found in Table 1, and exam-
ple retrievals in Figure 5. We now highlight some of the
takeaways.

Our full model outperforms previous work. We compare
our full model (“Our model: BRNN”) to the following base-
lines: DeViSE [10] is a model that learns a score between
words and images. As the simplest extension to the setting
of multiple image regions and multiple words, Karpathy et
al. [18] averaged the word and image region representa-
tions to obtain a single vector for each modality. Socher et
al. [39] is trained with a similar objective, but instead of
averaging the word representations, they merge word vec-
tors into a single sentence vector with a Recursive Neural
Network. DeFrag are the results reported by Karpathy et
al. [18]. Since we use different word vectors, dropout for
regularization and different cross-validation ranges (includ-
ing larger embedding sizes), we re-implemented their cost
function for a fair comparison (“Our implementation of De-
Frag”). In all of these cases, our full model (“Our model:
BRNN”) provides consistent improvements.

Our simpler cost function improves performance. We
now try to understand the sources of these improvements.
First, we removed the BRNN and used dependency tree re-
lations exactly as described in Karpathy et al. [18] (“Our
model: DepTree edges”). The only difference between this
model and “Our reimplementation of DeFrag” is the new,
simpler cost function introduced in Section 3.1.3. We see
that our formulation shows consistent improvements.

BRNN outperforms dependency tree relations. Further-
more, when we replace the dependency tree relations with
the BRNN, we observe additional performance improve-
ments. Since the dependency relations were shown to work
better than single words and bigrams [18], this suggests that
the BRNN is taking advantage of contexts longer than two
words. Furthermore, our method does not rely on extracting
a Dependency Tree and instead uses the raw words directly.

COCO results for future comparisons. The COCO
dataset has only recently been released, and we are not
aware of other published ranking results. Therefore, we re-
port results on a subset of 1,000 images and the full set of
5,000 test images for future comparisons.

Qualitative. As can be seen from example groundings in
Figure 5, the model discovers interpretable visual-semantic
correspondences, even for small or relatively rare objects
such as “seagulls” and “accordion”. These details would
be missed by models that only reason about full images.

4.2. Evaluation of Generated Descriptions
We have demonstrated that our alignment model produces
state of the art ranking results and qualitative experiments
suggest that the model effectively infers the alignment be-
tween words and image regions. Our task is now to synthe-
size these sentence snippets given new image regions. We
evaluate these predictions with the BLEU [35] score, which
despite multiple problems [14, 22] is still considered to be
the standard metric of evaluation in this setting. The BLEU
score evaluates a candidate sentence by measuring the frac-
tion of n-grams that appear in a set of references.



Figure 5. Example alignments predicted by our model. For every test image above, we retrieve the most compatible test sentence and
visualize the highest-scoring region for each word (before MRF smoothing described in Section 3.1.4) and the associated scores (vTi st).
We hide the alignments of low-scoring words to reduce clutter. We assign each region an arbitrary color.

Flickr8K Flickr30K COCO
Method of generating text B-1 B-2 B-3 B-1 B-2 B-3 B-1 B-2 B-3
Human agreement 0.59 0.35 0.16 0.64 0.36 0.16 0.57 0.31 0.13
Ranking: Nearest Neighbor 0.29 0.11 0.03 0.27 0.08 0.02 0.32 0.11 0.03
Generating: RNN 0.42 0.19 0.06 0.45 0.20 0.06 0.50 0.25 0.12

Table 2. BLEU score evaluation of full image predictions on 1,000 images. B-n is BLEU score that uses up to n-grams (high is good).

Our multimodal RNN outperforms retrieval baseline.
We first verify that our multimodal RNN is rich enough to
support sentence generation for full images. In this experi-
ment, we trained the RNN to generate sentences on full im-
ages from Flickr8K, Flickr30K, and COCO datasets. Then
at test time, we use the first four out of five sentences as
references and the fifth one to evaluate human agreement.
We also compare to a ranking baseline which uses the best
model from the previous section (Section 4.1) to annotate
each test image with the highest-scoring sentence from the
training set. The quantitative results of this experiment are
in Table 2. Note that the RNN model confidently outper-
forms the retrieval method. This result is especially interest-
ing in COCO dataset, since its training set consists of more
than 600,000 sentences that cover a large variety of de-
scriptions. Additionally, compared to the retrieval baseline
which compares each image to all sentences in the training
set, the RNN takes a fraction of a second to evaluate.

We show example fullframe predictions in Figure 6. Our
generative model (shown in blue) produces sensible de-
scriptions, even in the last two images that we consider to
be failure cases. Additionally, we verified that none of these
sentences appear in the training set. This suggests that the
model is not simply memorizing the training data. How-

ever, there are 20 occurrences of “man in black shirt” and
60 occurrences of “is paying guitar”, which the model may
have composed to describe the first image.

Region-level evaluation. Finally, we evaluate our region
RNN which was trained on the inferred, intermodal corre-
spondences. To support this evaluation, we collected a new
dataset of region-level annotations. Concretely, we asked 8
people to label a subset of COCO test images with region-
level text descriptions. The labeling interface consisted of
a single test image, and the ability to draw a bounding box
and annotate it with text. We provided minimal constraints
and instructions, except to “describe the content of each
box” and we encouraged the annotators to describe a large
variety of objects, actions, stuff, and high-level concepts.
The final dataset consists of 1469 annotations in 237 im-
ages. There are on average 6.2 annotations per image, and
each one is on average 4.13 words long.

We compare three models on this dataset: The region RNN
model, a fullframe RNN model that was trained on full im-
ages and sentences, and a ranking baseline. To predict de-
scriptions with the ranking baseline, we take the number
of words in the shortest reference annotation and search the
training set sentences for the highest scoring segment of text



Figure 6. Example fullframe predictions. Green: human annotation. Red: Most compatible sentence in the training set (i.e. ranking
baseline). Blue: Generated sentence using the fullframe multimodal RNN. We provide more examples in the supplementary material.

Figure 7. Example region predictions. We use our region-level multimodal RNN to generate text (shown on the right of each image) for
some of the bounding boxes in each image. The lines are grounded to centers of bounding boxes and the colors are chosen arbitrarily.

Method of generating text B-1 B-2 B-3
Human agreement 0.54 0.33 0.16
Ranking: Nearest Neighbor 0.14 0.03 0.07
Generating: Full frame model 0.12 0.03 0.01
Generating: Region level model 0.17 0.05 0.01

Table 3. BLEU score evaluation of image region annotations.

of that length. This ensures that the ranking baseline does
not accumulate any brevity penalty in its BLEU scores.

We report the results in Table 3, and show example pre-
dictions in Figure 7. To reiterate the difficulty of the task,
consider that the phrase “table with wine glasses” that is
generated on the middle image in Figure 7 only occurs in
the training set 30 times. Each time it may have a different
appearance and each time it may occupy a few (or none)
of the bounding boxes. To generate this string for the im-
age, the model had to correctly infer the correspondence and
then learn to generate this string.

There are several takeaways from Table 3. First, the hu-
man agreement baseline displays stronger performance rel-
ative to our RNN models on the region-level task than the
full image task. Additionally, the performance of the rank-
ing baseline is now competitive with the RNN model. One
possible explanation is that the snippets of text are shorter
in this dataset, which makes it easier to find a good match
in the training sentences. We believe that these results are
an encouraging first step towards the task of dense scene
descriptions, and we release our annotations so that future
work can compare to these results.

4.3. Limitations
Although our results are encouraging, the RNN model is
subject to multiple limitations. First, the model can only
generate a description of one input array of pixels at a fixed
resolution. A more sensible approach might be to use mul-
tiple saccades around the image to identify all entities, their
mutual interactions and wider context before generating a
description. Additionally, the RNN (as formulated in Equa-
tion 13) couples the visual and language domains in the hid-
den representation only through additive interactions, which
are known to be less expressive than more complicated mul-
tiplicative interactions [41]. Lastly, going directly from an
image-sentence dataset to region-level annotations as part
of a single model that is trained end-to-end with a single
objective remains an open problem.

5. Conclusions
We introduced a model that generates free-form descrip-
tions of image regions based on weak labels in form of a
dataset of images and sentences, and with very few hard-
coded assumptions. Our approach relied on a novel struc-
tured objective that aligned the visual and textual modalities
through a common, multimodal embedding. We showed
that this approach leads to consistent state of the art per-
formance on ranking experiments across three datasets. We
then described a multimodal Recurrent Neural Network ar-
chitecture that generates textual descriptions based on im-
age regions, and evaluated its performance with fullframe
and region-level experiments. We showed that in both cases
the multimodal RNN outperforms retrieval baselines.
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Gauvain. Neural probabilistic language models. In Innova-
tions in Machine Learning. Springer, 2006. 2

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database. In
CVPR, 2009. 3

[4] D. Elliott and F. Keller. Image description using visual de-
pendency representations. In EMNLP, pages 1292–1302,
2013. 2

[5] J. L. Elman. Finding structure in time. Cognitive science,
14(2):179–211, 1990. 5

[6] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. The pascal visual object classes (voc) chal-
lenge. International Journal of Computer Vision, 88(2):303–
338, June 2010. 1

[7] A. Farhadi, M. Hejrati, M. A. Sadeghi, P. Young,
C. Rashtchian, J. Hockenmaier, and D. Forsyth. Every pic-
ture tells a story: Generating sentences from images. In
ECCV. 2010. 1, 2

[8] L. Fei-Fei, A. Iyer, C. Koch, and P. Perona. What do we
perceive in a glance of a real-world scene? Journal of vision,
7(1):10, 2007. 1

[9] S. Fidler, A. Sharma, and R. Urtasun. A sentence is worth a
thousand pixels. In CVPR, 2013. 2

[10] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean,
T. Mikolov, et al. Devise: A deep visual-semantic embed-
ding model. In NIPS, 2013. 2, 6

[11] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. In CVPR, 2014. 3

[12] S. Gould, R. Fulton, and D. Koller. Decomposing a scene
into geometric and semantically consistent regions. In Com-
puter Vision, 2009 IEEE 12th International Conference on,
pages 1–8. IEEE, 2009. 2

[13] A. Gupta and P. Mannem. From image annotation to im-
age description. In Neural information processing. Springer,
2012. 2

[14] M. Hodosh, P. Young, and J. Hockenmaier. Framing image
description as a ranking task: data, models and evaluation
metrics. Journal of Artificial Intelligence Research, 2013. 1,
2, 5, 6

[15] R. JeffreyPennington and C. Manning. Glove: Global vec-
tors for word representation. 2

[16] Y. Jia. Caffe: An open source convolutional architecture
for fast feature embedding. http://caffe.berkeleyvision.org/,
2013.

[17] Y. Jia, M. Salzmann, and T. Darrell. Learning cross-modality
similarity for multinomial data. In ICCV, 2011. 2

[18] A. Karpathy, A. Joulin, and L. Fei-Fei. Deep fragment em-
beddings for bidirectional image sentence mapping. arXiv
preprint arXiv:1406.5679, 2014. 2, 3, 4, 5, 6

[19] R. Kiros, R. S. Zemel, and R. Salakhutdinov. Multimodal
neural language models. ICML, 2014. 2

[20] C. Kong, D. Lin, M. Bansal, R. Urtasun, and S. Fidler. What
are you talking about? text-to-image coreference. In CVPR,
2014. 2

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, 2012. 2, 3

[22] G. Kulkarni, V. Premraj, S. Dhar, S. Li, Y. Choi, A. C. Berg,
and T. L. Berg. Baby talk: Understanding and generating
simple image descriptions. In CVPR, 2011. 1, 2, 3, 6

[23] P. Kuznetsova, V. Ordonez, A. C. Berg, T. L. Berg, and
Y. Choi. Collective generation of natural image descriptions.
In ACL, 2012. 2

[24] P. Kuznetsova, V. Ordonez, T. L. Berg, U. C. Hill, and
Y. Choi. Treetalk: Composition and compression of trees
for image descriptions. Transactions of the Association for
Computational Linguistics, 2(10):351–362, 2014. 2

[25] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998. 2

[26] L.-J. Li, R. Socher, and L. Fei-Fei. Towards total scene un-
derstanding: Classification, annotation and segmentation in
an automatic framework. In CVPR. IEEE, 2009. 2

[27] S. Li, G. Kulkarni, T. L. Berg, A. C. Berg, and Y. Choi. Com-
posing simple image descriptions using web-scale n-grams.
In CoNLL, 2011. 2

[28] D. Lin, S. Fidler, C. Kong, and R. Urtasun. Visual semantic
search: Retrieving videos via complex textual queries. 2014.
2

[29] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-
mon objects in context. arXiv preprint arXiv:1405.0312,
2014. 1, 5

[30] C. Matuszek*, N. FitzGerald*, L. Zettlemoyer, L. Bo, and
D. Fox. A Joint Model of Language and Perception for
Grounded Attribute Learning. In Proc. of the 2012 Interna-
tional Conference on Machine Learning, Edinburgh, Scot-
land, June 2012. 2

[31] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khu-
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